
0人評分過此書
微積分
本書架構參考原文書編寫,內容力求簡明扼要,移除許多不必要且繁雜之證明,第一章針對微積分之學前知識做統整,後續章節針對微分、積分之重點觀念及理論著墨,並循序漸進推廣到應用層面,接著再介紹較深入之偏微分、重積分的概念;全書例題特別經過篩選,屏除較難之題目且無過多重複之題型,並將各節後習題精選在10題以內,大幅降低書本之厚度;在圖片之繪製上力求精準,即便搭配圖文自學也能夠輕鬆上手;另外,部分延伸教材移至節後習題作補充,供老師依授課進度斟酌使用。
本書適用於大學、科大、技術學院之理工科系『微積分』課程學生使用。
本書適用於大學、科大、技術學院之理工科系『微積分』課程學生使用。
-
Chapter 1 實數與函數 REAL NUMBERS AND FUNCTION
-
1-1 實數與集合(Real Numbers And Set)
-
1-2 平面直角坐標系(Cartesian Coordinate System)
-
1-3 函數及其圖形(Functions and Graphs)
-
1-4 合成函數與反函數(Combining Functions and Inverse Functions)
-
1-5 三角函數與反三角函數(Trigonometric Functions and Inverse Trigonometric Functions)
-
1-6 指數函數與對數函數(Exponential Functions and Logarithmic Functions)
-
-
Chapter 2 極限與連續 LIMITS AND CONTINUITY
-
2-1 函數極限的概念(Concept of Function Limit)
-
2-2 函數極限的定義與其性質(Definition of Function Limit and Their Properties)
-
2-3 連續函數(Continuity)
-
2-4 無窮極限與漸近線(Infinite Limits and Asymptotes of Graphs)
-
-
Chapter 3 微分 DIFFERENTIATION
-
3-1 導數(Derivative)
-
3-2 微分的規則(Differentiation Rules)
-
3-3 連鎖律與隱函數微分(The Chain Rule And Implicit Differentiation)
-
3-4 三角函數與反三角函數的微分(Differentiation of Trigonometric Functions and Inverse Trigonometric Functions)
-
3-5 指數函數與對數函數的微分(Differentiation of Exponential Functions and Logarithmic Functions)
-
-
Chapter 4 微分的應用 APPLICATIONS OF DIFFERENTIATION
-
4-1 區間的極值(Extrema on an interval)
-
4-2 洛氏定理﹑均值定理﹑不定型與羅必達法則(Rolle's Theorem and the Mean Value Theorem ﹑ Indetermediate Form and L'Hopital Rule)
-
4-3 單調函數與一階導數檢定(Monotonic function and The first Derivative Test)
-
4-4 凹向性與二階導數檢定(Concavity and the Second Derivative Test)
-
4-5 描繪圖形(A Summary of Curve Sketching)
-
4-6 最佳化問題(Optimization Problem)
-
-
Chapter 5 積分 INTEGRATION
-
5-1 反導函數與不定積分(Antiderivatives and Indefinite Integration)
-
5-2 面積(Area)
-
5-3 定積分(Definite Integral)
-
5-4 微積分基本定理(The Fundamental Theorem of Calculus)
-
5-5 不定積分與變數代換法(Indefinite Integrals and The Substitution Rule)
-
-
Chapter 6 積分的應用 APPLICATIONS OF INTEGRATION
-
6-1 平面區域的面積(Area of a Plane Region)
-
6-2 物體的體積(Volume of a solid)
-
6-3 弧長及旋轉曲面(Arc Length and Surface of Revolution)
-
6-4 功(Work)
-
-
Chapter 7 積分的技巧 TECHNIQUES OF INTEGRATION
-
7-1 分部積分法(Integration by Parts)
-
7-2 三角函數的積分(Trigonometric Integrals)
-
7-3 三角代換法(Trigonometric Substitution)
-
7-4 部分分式法(Partial Fractions Method)
-
7-5 參數方程式的積分(Integration of Parametric Equations)
-
7-6 數值積分(Numerical Integration)
-
-
Chapter 8 無窮級數與泰勒級數 INFINITE SERIES AND TAYLOR SERIES
-
8-1 泰勒多項式(Taylor Polynomials)
-
8-2 無窮數列與無窮級數(Infinite Sequences and Infinite Series)
-
8-3 正項級數與交錯級數(Positive-term Series and Alternating Series)
-
8-4 冪級數與泰勒級數(Power Series and Taylor Series)
-
-
Chapter 9 偏導數 PARTIAL DERIVATIVES
-
9-1 多變數函數(Functions of Several Variables)
-
9-2 極限與連續(Limits and Continuity)
-
9-3 偏導數(Partial Derivatives)
-
9-4 連鎖律(Chain Rule)
-
9-5 方向導數(Directional Derivatives)
-
9-6 切平面與法線(Tangent Planes and Normal Line)
-
9-7 泰勒公式與極值(Taylor Formula and Extreme Values)
-
-
Chapter 10 重積分 MULTIPLE INTEGRALS
-
10-1 二重積分與疊積分(Double Integrals and Iterated Integrals)
-
10-2 直角坐標系下的三重積分(Triple Integrals in Rectangular Coordinates)
-
-
附錄
-
附錄一 羅必達法則之證明
-
附錄二 數列﹑級數相關定理證明
-
附錄三 泰勒公式與極值的證明
-
附錄四 拉格蘭日乘子法(Lagrange Multiplers)
-
- 中英對照表
評分與評論
請登入後再留言與評分