0人評分過此書

Mathemagical Cruise

出版日期
2023/08/01
閱讀格式
PDF
書籍分類
學科分類
ISBN
9789863507543

本館館藏

借閱規則
當前可使用人數 30
借閱天數 14
線上看 0
借閱中 0
選擇分享方式

推薦本館採購書籍

您可以將喜歡的電子書推薦給圖書館,圖書館會參考讀者意見進行採購

讀者資料
圖書館
* 姓名
* 身分
系所
* E-mail
※ 我們會寄送一份副本至您填寫的Email中
電話
※ 電話格式為 區碼+電話號碼(ex. 0229235151)/ 手機格式為 0900111111
* 請輸入驗證碼
Mathemagical Cruise is not a mere collection of fun problems with clever solutions. It offers shining examples of how to approach problem solving.

Each chapter is independent and can be read in any order by everyone with a basic background in high school mathematics. Some highlights of the excursion are:

● Slick Solutions of Double Sequence, Klarner’s Puzzle, Cube Tour, etc.
● Easy Proofs of Bolyai-Gerwin Theorem, Problem by P. Erdös and more
● New Year Puzzles (Especially, Year 2021 & 2022)
● Twelve Points on the Nine-Point Circle
● What's a Point in a Square?
● Five Circles through a 5x6 Grid
● Generalization of Ceva's Theorem
● Easy Approach to Coaxal Circles
● Inversion and its Applications
● Lattice Integer Triangles
● Isbell's Problem
● Sequence of Theorems of Simson & Cantor
● Miscellaneous Problems with Solutions

By cruising through these treasure islands, the reader will traverse mathematical boundaries. Be adventurous and inspired to explore the seas beyond the horizon.
  • Preface
  • 1 Puzzles
    • 1.1 Parity
    • 1.2 Double Sequences
    • 1.3 15-Puzzle
    • 1.4 Klarner’s Puzzle
    • 1.5 A Cube Tour
    • 1.6 Safe Cracking
    • 1.7 Tilings
    • 1.8 A Problem on Weighted Trees
  • 2 The Bolyai-Gerwin Theorem
    • 2.1 Baby Pythagoras
    • 2.2 A Triangular Carpet
    • 2.3 The Bolyai-Gerwin Theorem
  • 3 New Year Puzzles
    • 3.1 New Year Puzzle 2014
    • 3.2 New Year Puzzle 2015
    • 3.3 Heron’s Formula Revisited
    • 3.4 New Year Puzzle 2016
    • 3.5 New Year Puzzle 2017
    • 3.6 New Year Puzzle 2018
    • 3.7 New Year Puzzle 2019
    • 3.8 New Year Puzzle 2020
    • 3.9 New Year Puzzle 2021
    • 3.10 New Year Puzzle 2022
    • 3.11 New Year Puzzle 2023
    • 3.12 New Year Puzzle 2024
    • 3.13 New Year Puzzle 2025
  • 4 In Remembrance of Professor Ross Honsberger
    • 4.1 The Bulging Semicircle
    • 4.2 The Last Digits of 79999
    • 4.3 A Diophantine Equation
    • 4.4 Sum of the Digits
    • 4.5 Gaps between Consecutive Primes
    • 4.6 Triangle Numbers That Are Perfect Squares
    • 4.7 A Problemby Erd˝os
  • 5 Triangles
    • 5.1 Medians
    • 5.2 Orthocenter and Circumcenter
    • 5.3 Incenter and Excenters
  • 6 From the Desks of My Friends
    • 6.1 From Dean Ballard
    • 6.1.1 What’s a Point in a Square?
    • 6.1.2 Wythoff’s Game
    • 6.1.3 The Game of Nim
    • 6.2 From Tien-Sheng Hsu
  • 7 How Many Interior Right Angles Can a Polygon Have?
  • 8 Ceva and Menelaus Revisited
  • 9 Circles
    • 9.1 Preliminaries
    • 9.2 Radical Axes
    • 9.3 Coaxal Circles
    • 9.4 Inversion
    • 9.5 Theorems of Ptolemy Steiner and Poncelet
    • 9.6 An Old Japanese Theorem
    • 9.7 With Coordinates
  • 10 Lattice Points
    • 10.1 The Schinzel Theorem
    • 10.2 Lattice Integer Triangles
    • 10.3 The Isbell Problem
  • 11 On the Theorems of Simson and of Cantor
  • Appendix A Problems
  • Appendix B Solutions and Hints

評分與評論

請登入後再留言與評分
幫助
您好,請問需要甚麼幫助呢?
使用指南

客服專線:0800-000-747

服務時間:週一至週五 AM 09:00~PM 06:00

loading