0人評分過此書

Wavelet Analysis on the Sphere

出版社
出版日期
2017/03/20
閱讀格式
EPUB
書籍分類
學科分類
ISBN
9783110481242

本館館藏

借閱規則
當前可使用人數 30
借閱天數 14
線上看 0
借閱中 0
選擇分享方式

推薦本館採購書籍

您可以將喜歡的電子書推薦給圖書館,圖書館會參考讀者意見進行採購

讀者資料
圖書館
* 姓名
* 身分
系所
* E-mail
※ 我們會寄送一份副本至您填寫的Email中
電話
※ 電話格式為 區碼+電話號碼(ex. 0229235151)/ 手機格式為 0900111111
* 請輸入驗證碼
The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Figures
  • List of Tables
  • Preface
  • 1 Introduction
  • 2 Review of orthogonal polynomials
    • 2.1 Introduction
    • 2.2 Generalities
    • 2.3 Orthogonal polynomials via a three-level recurrence
    • 2.4 Darboux–Christoffel rule
    • 2.5 Continued fractions
    • 2.6 Orthogonal polynomials via Rodrigues rule
    • 2.7 Orthogonal polynomials via differential equations
    • 2.8 Some classical orthogonal polynomials
      • 2.8.1 Legendre polynomials
      • 2.8.2 Laguerre polynomials
      • 2.8.3 Hermite polynomials
      • 2.8.4 Chebyshev polynomials
      • 2.8.5 Gegenbauer polynomials
    • 2.9 Conclusion
  • 3 Homogenous polynomials and spherical harmonics
    • 3.1 Introduction
    • 3.2 Spherical Laplace operator
    • 3.3 Some direct computations on S2
    • 3.4 Homogenous polynomials
    • 3.5 Spherical harmonics
    • 3.6 Fourier transform of spherical harmonics
    • 3.7 Zonal functions
    • 3.8 Conclusion
  • 4 Review of special functions
    • 4.1 Introduction
    • 4.2 Classical special functions
      • 4.2.1 Euler’s Γ function
      • 4.2.2 Euler’s beta function
      • 4.2.3 Theta function
      • 4.2.4 Riemann zeta function
      • 4.2.5 Hypergeometric function
      • 4.2.6 Legendre function
      • 4.2.7 Bessel function
      • 4.2.8 Hankel function
      • 4.2.9 Mathieu function
      • 4.2.10 Airy function
    • 4.3 Hankel–Bessel transform
  • 5 Spheroidal-type wavelets
    • 5.1 Introduction
    • 5.2 Wavelets on the real line
    • 5.3 Chebyshev wavelets
    • 5.4 Gegenbauer wavelets
    • 5.5 Hermite wavelets
    • 5.6 Laguerre wavelets
    • 5.7 Bessel wavelets
    • 5.8 Cauchy wavelets
    • 5.9 Spherical wavelets
  • 6 Some applications
    • 6.1 Introduction
    • 6.2 Wavelets for numerical solutions of PDEs
    • 6.3 Wavelets for integrodifferential equations
    • 6.4 Wavelets in image and signal processing
    • 6.5 Wavelets for time-series processing
  • Bibliography
  • 出版地 德國
  • 語言 德文

評分與評論

請登入後再留言與評分
幫助
您好,請問需要甚麼幫助呢?
使用指南

客服專線:0800-000-747

服務時間:週一至週五 AM 09:00~PM 06:00

loading