開啟 App
0人評分過此書

初探機器學習演算法

出版日期
2017/12/07
閱讀格式
PDF
書籍分類
學科分類
ISBN
9789864766741

本館館藏

借閱規則
當前可使用人數 30
借閱天數 14
線上看 0
借閱中 0
選擇分享方式

推薦本館採購書籍

您可以將喜歡的電子書推薦給圖書館,圖書館會參考讀者意見進行採購

讀者資料
圖書館
* 姓名
* 身分
系所
* E-mail
※ 我們會寄送一份副本至您填寫的Email中
電話
※ 電話格式為 區碼+電話號碼(ex. 0229235151)/ 手機格式為 0900111111
* 請輸入驗證碼
熱門資料科學與機器學習演算法學習指南

  本書介紹並說明資料科學領域常見且重要的機器學習演算法,這些演算法可用於監督式與非監督學習、強化學習與半監督式學習。書中所討論的演算法包括線性迴歸、logistic迴歸、SVM、樸素貝氏、k-means、隨機森林、TensorFlow與特徵工程。

  你將會學到如何使用這些演算法來解決問題,以及它們的工作原理。同時也會介紹自然語言處理與推薦系統,以協助同時執行多種演算法。

  最後將會知道如何挑選正確的機器學習演算法,來為你的問題進行分群、分類或迴歸。

  你將學會:
  • 熟悉機器學習的重要元素
  • 瞭解特徵選擇與特徵工程流程
  • 平衡線性迴歸的效能與誤差
  • 建立資料模型,與使用各種類型的演算法來瞭解它的工作方式
  • 微調SVM的參數
  • 實作資料集的群聚
  • 探索自然語言處理與推薦系統的概念
  • 從零開始建立機器學習架構
  • 出版地 臺灣
  • 語言 繁體中文

評分與評論

請登入後再留言與評分
幫助
您好,請問需要甚麼幫助呢?
使用指南

客服專線:0800-000-747

服務時間:週一至週五 AM 09:00~PM 06:00

loading