0人評分過此書

Polymer Engineering

作者
出版社
出版日期
2017/09/25
閱讀格式
EPUB
書籍分類
學科分類
ISBN
9783110468342

本館館藏

借閱規則
當前可使用人數 30
借閱天數 14
線上看 0
借閱中 0
選擇分享方式

推薦本館採購書籍

您可以將喜歡的電子書推薦給圖書館,圖書館會參考讀者意見進行採購

讀者資料
圖書館
* 姓名
* 身分
系所
* E-mail
※ 我們會寄送一份副本至您填寫的Email中
電話
※ 電話格式為 區碼+電話號碼(ex. 0229235151)/ 手機格式為 0900111111
* 請輸入驗證碼
Polymer Engineering focuses on the preparation and application of polymers in several hot topics such as artificial photosynthesis, water purification by membrane technologies, and biodiesel production from wastewater plants. The authors not only describe the latest developments in polymer science, but also support these experimental results by computational chemistry and modelling studies.
  • Cover
  • Title Page
  • Copyright
  • Preface
  • Contents
  • List of contributing authors
  • 1 Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives
    • 1.1 General introduction
    • 1.2 General concepts of epoxy thermosets
    • 1.3 Curing agents
    • 1.4 Characteristics of epoxy thermosets
      • 1.4.1 Toughness
      • 1.4.2 Shrinkage
      • 1.4.3 Reworkability
      • 1.4.4 Scratch resistance
    • 1.5 Dendritic polymers
      • 1.5.1 Hyperbranched polymers
      • 1.5.2 Star polymers
    • 1.6 Modified epoxy thermosets by using HBPs and other highly branched topologies
    • 1.7 HBPs and multiarm SPs from PEI
    • 1.8 Modification of hyperbranched PEI with long alkyl chains and its use as modifier in epoxy thermosets
    • 1.9 Synthesis of multiarm SPs by ROP and their use as modifiers in epoxy thermosets
    • 1.10 Ethoxysilylation of hyperbranched PEI and the use in the preparation of hybrid thermosets
    • 1.11 Use of modified hyperbranched PEI as a macromonomer in the preparation of thermosets by a two-stage click-chemistry process
    • References
  • 2 Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications
    • 2.1 Biodegradable polymers
    • 2.2 Polymerization mechanisms for polyester synthesis
    • 2.3 Catalysts for ROP of PLAs
    • 2.4 Rare earth-based catalysts for synthesis of PLAs
    • 2.5 Conclusions
    • References
  • 3 BioArtificial polymers
    • 3.1 Introduction
    • 3.2 Biomolecule immobilization techniques
      • 3.2.1 Adsorption
      • 3.2.2 Covalent binding
      • 3.2.3 Entrapment
      • 3.2.4 Encapsulation
    • 3.3 Polymer/biomolecule conjugates
      • 3.3.1 Enzymes
      • 3.3.2 Polysaccharides
      • 3.3.3 Channels
      • 3.3.4 Nucleic acids
      • 3.3.5 Cells
    • 3.4 Summary
    • References
  • 4 Recent advances in “bioartificial polymeric materials” based nanovectors
    • 4.1 Introduction
      • 4.1.1 Bioartificial polymeric materials
      • 4.1.2 Nanotechnology and medicine
    • 4.2 Bioartificial polymeric nanovectors
      • 4.2.1 Nanospheres and Nanocapsules
      • 4.2.2 Nanohydrogels and nanoaggregates
      • 4.2.3 Micelles (MCs) and solid lipid nanoparticles (SLNs)
      • 4.2.4 Nanofibers
    • 4.3 Conclusion
    • References
  • 5 Polymer additives
    • 5.1 Introduction
      • 5.1.1 Role of polymer additives
      • 5.1.2 Additives incorporation in polymer formulation
    • 5.2 Plasticizers
      • 5.2.1 Mechanism of plasticisation
      • 5.2.2 Classification of plasticizers
      • 5.2.3 Bio-based plasticizers
    • 5.3 Flame retardants
      • 5.3.1 Halogenated FRs
      • 5.3.2 Phosphorus-based FRs
      • 5.3.3 Inorganic FRs
      • 5.3.4 Bio-based FRs
    • 5.4 Impact modifiers
      • 5.4.1 Butadiene based graft copolymers
      • 5.4.2 Acrylic modifiers
      • 5.4.3 Elastomers
    • 5.5 Antioxidants and UV stabilizers
      • 5.5.1 Antioxidants
      • 5.5.2 UV stabilizers
      • 5.5.3 Natural antioxidants
    • 5.6 Antimicrobials
      • 5.6.1 Organic antimicrobial agents
      • 5.6.2 Inorganic antimicrobial agents
      • 5.6.3 Natural antimicrobial additives for polymers
      • References
  • 6 Technological solutions for encapsulation
    • 6.1 Introduction
    • 6.2 Chemical methods
      • 6.2.1 Interfacial polymerization
      • 6.2.2 In situ polymerization
    • 6.3 Physicochemical methods
      • 6.3.1 Coacervation
      • 6.3.2 Layer by layer
      • 6.3.3 Sol–gel encapsulation
      • 6.3.4 Suspension cross-linking
    • 6.4 Physicomechanical methods
      • 6.4.1 Spray-drying
      • 6.4.2 Co-extrusion
      • 6.4.3 Fluidized-bed spray coating
      • 6.4.4 Phase-inversion precipitation
    • 6.5 General conclusions
    • References
  • 7 Natural and synthetic polymers in fabric and home care applications
    • 7.1 Introduction
    • 7.2 Benefits of polymers in fabric and home care formulations
      • 7.2.1 Soil release
      • 7.2.2 Dispersant
      • 7.2.3 Anti-redeposition
      • 7.2.4 Dye transfer inhibitors
      • 7.2.5 Rheology modifier
    • 7.3 Natural and synthetic polymers
      • 7.3.1 Synthetic polymers
      • 7.3.2 Natural polymers
      • 7.3.3 Carrageenan
      • 7.3.4 Alginates
    • 7.4 Conclusions
    • References
  • 8 Polymers in separaion processes
    • 8.1 Polymers as membranes
      • 8.1.1 Introduction
      • 8.1.2 Reverse osmosis
      • 8.1.3 Nanofiltration
      • 8.1.4 Ultrafiltration
      • 8.1.5 Dialysis
      • 8.1.6 Membrane extraction
    • 8.2 Polymer resins
      • 8.2.1 Ion-exchange resin
      • 8.2.2 Solvent impregnated resin
      • References
  • 9 Polymer application for separation/filtration of biological active compounds
    • 9.1 Introduction
      • 9.1.1 Membranes used for separation of biologically active compounds
      • 9.1.2 Concentration and purification of bioactive compounds from natural extracts
      • 9.1.3 Recovery of extraction solvents
      • References
  • 10 Polymers application in proton exchange membranes for fuel cells (PEMFCs)
    • 10.1 Introduction
    • 10.2 Historical background
    • 10.3 Fuel cells
      • 10.3.1 Alkaline fuel cells (AFCs)
      • 10.3.2 Phosphoric acid fuel cells (PAFCs)
      • 10.3.3 Solid oxide fuel cells (SOFCs)
      • 10.3.4 Molten carbonate fuel cells (MCFCs)
      • 10.3.5 Direct methanol fuel cells (DMFCs)
      • 10.3.6 Proton exchange membrane fuel cells (PEMFCs)
    • 10.4 Proton exchange membranes for fuel cells
      • 10.4.1 Poly(perfluorosulphonic acid) membranes
      • 10.4.2 Partially fluorinated and non-fluorinated polystyrene-based membranes
      • 10.4.3 Polybenzimidazole/H3PO4 membranes
      • 10.4.4 Polyphosphazene membranes
      • 10.4.5 Sulphonated polyimide membranes
      • 10.4.6 Sulphonated poly(arylene ether ketone)-based membranes
      • 10.4.7 Natural polymer- and bio-inspired-based membranes
    • 10.5 Synthetic methods of PEMs preparation
    • 10.6 Applications of PEM fuel cell technology
    • 10.7 Summary and future perspectives
    • References
  • 11 Membrane contactors for CO2 capture processes – critical review
    • 11.1 Introduction
    • 11.2 Membrane contactors
    • 11.3 Membranes
      • 11.3.1 Ceramics
      • 11.3.2 Polymers
      • 11.3.3 Biocomposite
    • 11.4 Absorbents
    • 11.5 Conclusions
    • References
  • 12 Modeling and simulation of membrane process
    • 12.1 Introduction
    • 12.2 Zero-dimensional modeling
      • 12.2.1 Basic modeling description
      • 12.2.2 Molecular modeling
      • 12.2.3 Neural networks modeling
      • 12.3.2 Boltzmann lattice models
      • References
  • 13 Applications of silver nanoparticles stabilized and/or immobilized by polymer matrixes
    • 13.1 Nanotechnology
    • 13.2 Silver nanoparticles
      • 13.2.1 Polymeric composite membranes containing silver nanoparticles for antifouling properties during water and wastewater treatment
      • 13.2.2 Polymeric stabilized silver nanoparticles for SERS properties
      • 13.2.3 Polymeric stabilized silver nanoparticles as catalyst
      • 13.2.4 Silver polymer-based material in medical applications
      • References
  • 14 Spectroscopic properties of polymer composites
    • 14.1 Introduction
      • 14.1.1 Review of results
      • 14.1.2 Polymer composites with graphene
      • 14.1.3 Polymer composites with carbon nanotubes
      • 14.1.4 Polymer composites with GNRs
      • 14.1.5 Examples of other polymer composites
    • 14.2 Summary
    • References
  • 15 Combining catalytical and biological processes to transform cellulose into high value-added products
    • 15.1 Introduction
    • 15.2 Materials and methods
      • 15.2.1 Preparation of the supports and catalysts
      • 15.2.2 X-ray diffraction (XRD)
      • 15.2.3 Cellulose characterization
      • 15.2.4 Cellulose hydrolysis
      • 15.2.5 Fermentation
      • 15.2.6 Analytical methods
    • 15.3 Results and discussion
      • 15.3.1 Cellulose hydrolysis
      • 15.3.2 Fermentation of the water-soluble fractions (WSFs)
    • 15.4 Conclusions
    • References
  • Index
  • 出版地 德國
  • 語言 德文

評分與評論

請登入後再留言與評分
幫助
您好,請問需要甚麼幫助呢?
使用指南

客服專線:0800-000-747

服務時間:週一至週五 AM 09:00~PM 06:00

loading